MMAP
Section: Linux Programmer's Manual (2)
Updated: 2014-08-19
Index
Return to Main Contents
NAME
mmap, munmap - map or unmap files or devices into memory
SYNOPSIS
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);
int munmap(void *addr, size_t length);
See NOTES for information on feature test macro requirements.
DESCRIPTION
mmap()
creates a new mapping in the virtual address space of
the calling process.
The starting address for the new mapping is specified in
addr.
The
length
argument specifies the length of the mapping.
If
addr
is NULL,
then the kernel chooses the address at which to create the mapping;
this is the most portable method of creating a new mapping.
If
addr
is not NULL,
then the kernel takes it as a hint about where to place the mapping;
on Linux, the mapping will be created at a nearby page boundary.
The address of the new mapping is returned as the result of the call.
The contents of a file mapping (as opposed to an anonymous mapping; see
MAP_ANONYMOUS
below), are initialized using
length
bytes starting at offset
offset
in the file (or other object) referred to by the file descriptor
fd.
offset
must be a multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE).
The
prot
argument describes the desired memory protection of the mapping
(and must not conflict with the open mode of the file).
It is either
PROT_NONE
or the bitwise OR of one or more of the following flags:
- PROT_EXEC
-
Pages may be executed.
- PROT_READ
-
Pages may be read.
- PROT_WRITE
-
Pages may be written.
- PROT_NONE
-
Pages may not be accessed.
The
flags
argument determines whether updates to the mapping
are visible to other processes mapping the same region,
and whether updates are carried through to the underlying file.
This behavior is determined by including exactly one
of the following values in
flags:
- MAP_SHARED
-
Share this mapping.
Updates to the mapping are visible to other processes that map this file,
and are carried through to the underlying file.
The file may not actually be updated until
msync(2)
or
munmap()
is called.
- MAP_PRIVATE
-
Create a private copy-on-write mapping.
Updates to the mapping are not visible to other processes
mapping the same file, and are not carried through to
the underlying file.
It is unspecified whether changes made to the file after the
mmap()
call are visible in the mapped region.
Both of these flags are described in POSIX.1-2001.
In addition, zero or more of the following values can be ORed in
flags:
- MAP_32BIT (since Linux 2.4.20, 2.6)
-
Put the mapping into the first 2 Gigabytes of the process address space.
This flag is supported only on x86-64, for 64-bit programs.
It was added to allow thread stacks to be allocated somewhere
in the first 2GB of memory,
so as to improve context-switch performance on some early
64-bit processors.
Modern x86-64 processors no longer have this performance problem,
so use of this flag is not required on those systems.
The
MAP_32BIT
flag is ignored when
MAP_FIXED
is set.
- MAP_ANON
-
Synonym for
MAP_ANONYMOUS.
Deprecated.
- MAP_ANONYMOUS
-
The mapping is not backed by any file;
its contents are initialized to zero.
The
fd
and
offset
arguments are ignored;
however, some implementations require
fd
to be -1 if
MAP_ANONYMOUS
(or
MAP_ANON)
is specified,
and portable applications should ensure this.
The use of
MAP_ANONYMOUS
in conjunction with
MAP_SHARED
is supported on Linux only since kernel 2.4.
- MAP_DENYWRITE
-
This flag is ignored.
(Long ago, it signaled that attempts to write to the underlying file
should fail with
ETXTBUSY.
But this was a source of denial-of-service attacks.)
- MAP_EXECUTABLE
-
This flag is ignored.
- MAP_FILE
-
Compatibility flag.
Ignored.
- MAP_FIXED
-
Don't interpret
addr
as a hint: place the mapping at exactly that address.
addr
must be a multiple of the page size.
If the memory region specified by
addr
and
len
overlaps pages of any existing mapping(s), then the overlapped
part of the existing mapping(s) will be discarded.
If the specified address cannot be used,
mmap()
will fail.
Because requiring a fixed address for a mapping is less portable,
the use of this option is discouraged.
- MAP_GROWSDOWN
-
Used for stacks.
Indicates to the kernel virtual memory system that the mapping
should extend downward in memory.
- MAP_HUGETLB (since Linux 2.6.32)
-
Allocate the mapping using "huge pages."
See the Linux kernel source file
Documentation/vm/hugetlbpage.txt
for further information.
- MAP_LOCKED (since Linux 2.5.37)
-
Lock the pages of the mapped region into memory in the manner of
mlock(2).
This flag is ignored in older kernels.
- MAP_NONBLOCK (since Linux 2.5.46)
-
Only meaningful in conjunction with
MAP_POPULATE.
Don't perform read-ahead:
create page tables entries only for pages
that are already present in RAM.
Since Linux 2.6.23, this flag causes
MAP_POPULATE
to do nothing.
One day the combination of
MAP_POPULATE
and
MAP_NONBLOCK
may be reimplemented.
- MAP_NORESERVE
-
Do not reserve swap space for this mapping.
When swap space is reserved, one has the guarantee
that it is possible to modify the mapping.
When swap space is not reserved one might get
SIGSEGV
upon a write
if no physical memory is available.
See also the discussion of the file
/proc/sys/vm/overcommit_memory
in
proc(5).
In kernels before 2.6, this flag had effect only for
private writable mappings.
- MAP_POPULATE (since Linux 2.5.46)
-
Populate (prefault) page tables for a mapping.
For a file mapping, this causes read-ahead on the file.
Later accesses to the mapping will not be blocked by page faults.
MAP_POPULATE
is supported for private mappings only since Linux 2.6.23.
- MAP_STACK (since Linux 2.6.27)
-
Allocate the mapping at an address suitable for a process
or thread stack.
This flag is currently a no-op,
but is used in the glibc threading implementation so that
if some architectures require special treatment for stack allocations,
support can later be transparently implemented for glibc.
- MAP_UNINITIALIZED (since Linux 2.6.33)
-
Don't clear anonymous pages.
This flag is intended to improve performance on embedded devices.
This flag is honored only if the kernel was configured with the
CONFIG_MMAP_ALLOW_UNINITIALIZED
option.
Because of the security implications,
that option is normally enabled only on embedded devices
(i.e., devices where one has complete control of the contents of user memory).
Of the above flags, only
MAP_FIXED
is specified in POSIX.1-2001.
However, most systems also support
MAP_ANONYMOUS
(or its synonym
MAP_ANON).
Some systems document the additional flags
MAP_AUTOGROW,
MAP_AUTORESRV,
MAP_COPY,
and
MAP_LOCAL.
Memory mapped by
mmap()
is preserved across
fork(2),
with the same attributes.
A file is mapped in multiples of the page size.
For a file that is not
a multiple of the page size, the remaining memory is zeroed when mapped,
and writes to that region are not written out to the file.
The effect of
changing the size of the underlying file of a mapping on the pages that
correspond to added or removed regions of the file is unspecified.
munmap()
The
munmap()
system call deletes the mappings for the specified address range, and
causes further references to addresses within the range to generate
invalid memory references.
The region is also automatically unmapped
when the process is terminated.
On the other hand, closing the file
descriptor does not unmap the region.
The address
addr
must be a multiple of the page size.
All pages containing a part
of the indicated range are unmapped, and subsequent references
to these pages will generate
SIGSEGV.
It is not an error if the
indicated range does not contain any mapped pages.
Timestamps changes for file-backed mappings
For file-backed mappings, the
st_atime
field for the mapped file may be updated at any time between the
mmap()
and the corresponding unmapping; the first reference to a mapped
page will update the field if it has not been already.
The
st_ctime
and
st_mtime
field for a file mapped with
PROT_WRITE
and
MAP_SHARED
will be updated after
a write to the mapped region, and before a subsequent
msync(2)
with the
MS_SYNC
or
MS_ASYNC
flag, if one occurs.
RETURN VALUE
On success,
mmap()
returns a pointer to the mapped area.
On error, the value
MAP_FAILED
(that is,
(void *) -1)
is returned, and
errno
is set appropriately.
On success,
munmap()
returns 0, on failure -1, and
errno
is set (probably to
EINVAL).
ERRORS
- EACCES
-
A file descriptor refers to a non-regular file.
Or a file mapping was requested, but
fd
is not open for reading.
Or
MAP_SHARED
was requested and
PROT_WRITE
is set, but
fd
is not open in read/write
(O_RDWR)
mode.
Or
PROT_WRITE
is set, but the file is append-only.
- EAGAIN
-
The file has been locked, or too much memory has been locked (see
setrlimit(2)).
- EBADF
-
fd
is not a valid file descriptor (and
MAP_ANONYMOUS
was not set).
- EINVAL
-
We don't like
addr,
length,
or
offset
(e.g., they are too large, or not aligned on a page boundary).
- EINVAL
-
(since Linux 2.6.12)
length
was 0.
- EINVAL
-
flags
contained neither
MAP_PRIVATE
or
MAP_SHARED,
or contained both of these values.
- ENFILE
-
The system limit on the total number of open files has been reached.
- ENODEV
-
The underlying filesystem of the specified file does not support
memory mapping.
- ENOMEM
-
No memory is available, or the process's maximum number of mappings would
have been exceeded.
- EPERM
-
The
prot
argument asks for
PROT_EXEC
but the mapped area belongs to a file on a filesystem that
was mounted no-exec.
- ETXTBSY
-
MAP_DENYWRITE
was set but the object specified by
fd
is open for writing.
- EOVERFLOW
-
On 32-bit architecture together with the large file extension
(i.e., using 64-bit
off_t):
the number of pages used for
length
plus number of pages used for
offset
would overflow
unsigned long
(32 bits).
Use of a mapped region can result in these signals:
- SIGSEGV
-
Attempted write into a region mapped as read-only.
- SIGBUS
-
Attempted access to a portion of the buffer that does not correspond
to the file (for example, beyond the end of the file, including the
case where another process has truncated the file).
CONFORMING TO
SVr4, 4.4BSD, POSIX.1-2001.
AVAILABILITY
On POSIX systems on which
mmap(),
msync(2),
and
munmap()
are available,
_POSIX_MAPPED_FILES
is defined in <unistd.h> to a value greater than 0.
(See also
sysconf(3).)
NOTES
On some hardware architectures (e.g., i386),
PROT_WRITE
implies
PROT_READ.
It is architecture dependent whether
PROT_READ
implies
PROT_EXEC
or not.
Portable programs should always set
PROT_EXEC
if they intend to execute code in the new mapping.
The portable way to create a mapping is to specify
addr
as 0 (NULL), and omit
MAP_FIXED
from
flags.
In this case, the system chooses the address for the mapping;
the address is chosen so as not to conflict with any existing mapping,
and will not be 0.
If the
MAP_FIXED
flag is specified, and
addr
is 0 (NULL), then the mapped address will be 0 (NULL).
Certain
flags
constants are defined only if either
_BSD_SOURCE
or
_SVID_SOURCE
is defined.
(Requiring
_GNU_SOURCE
also suffices,
and requiring that macro specifically would have been more logical,
since these flags are all Linux-specific.)
The relevant flags are:
MAP_32BIT,
MAP_ANONYMOUS
(and the synonym
MAP_ANON),
MAP_DENYWRITE,
MAP_EXECUTABLE,
MAP_FILE,
MAP_GROWSDOWN,
MAP_HUGETLB,
MAP_LOCKED,
MAP_NONBLOCK,
MAP_NORESERVE,
MAP_POPULATE,
and
MAP_STACK.
C library/kernel ABI differences
This page describes the interface provided by the glibc
mmap()
wrapper function.
Originally, this function invoked a system call of the same name.
Since kernel 2.4, that system call has been superseded by
mmap2(2),
and nowadays
the glibc
mmap()
wrapper function invokes
mmap2(2)
with a suitably adjusted value for
offset.
BUGS
On Linux there are no guarantees like those suggested above under
MAP_NORESERVE.
By default, any process can be killed
at any moment when the system runs out of memory.
In kernels before 2.6.7, the
MAP_POPULATE
flag has effect only if
prot
is specified as
PROT_NONE.
SUSv3 specifies that
mmap()
should fail if
length
is 0.
However, in kernels before 2.6.12,
mmap()
succeeded in this case: no mapping was created and the call returned
addr.
Since kernel 2.6.12,
mmap()
fails with the error
EINVAL
for this case.
POSIX specifies that the system shall always
zero fill any partial page at the end
of the object and that system will never write any modification of the
object beyond its end.
On Linux, when you write data to such partial page after the end
of the object, the data stays in the page cache even after the file
is closed and unmapped
and even though the data is never written to the file itself,
subsequent mappings may see the modified content.
In some cases, this could be fixed by calling
msync(2)
before the unmap takes place;
however, this doesn't work on tmpfs
(for example, when using POSIX shared memory interface documented in
shm_overview(7)).
EXAMPLE
The following program prints part of the file specified in
its first command-line argument to standard output.
The range of bytes to be printed is specified via offset and length
values in the second and third command-line arguments.
The program creates a memory mapping of the required
pages of the file and then uses
write(2)
to output the desired bytes.
Program source
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)
int
main(int argc, char *argv[])
{
char *addr;
int fd;
struct stat sb;
off_t offset, pa_offset;
size_t length;
ssize_t s;
if (argc < 3 || argc > 4) {
fprintf(stderr, "%s file offset [length]\n", argv[0]);
exit(EXIT_FAILURE);
}
fd = open(argv[1], O_RDONLY);
if (fd == -1)
handle_error("open");
if (fstat(fd, &sb) == -1) /* To obtain file size */
handle_error("fstat");
offset = atoi(argv[2]);
pa_offset = offset & ~(sysconf(_SC_PAGE_SIZE) - 1);
/* offset for mmap() must be page aligned */
if (offset >= sb.st_size) {
fprintf(stderr, "offset is past end of file\n");
exit(EXIT_FAILURE);
}
if (argc == 4) {
length = atoi(argv[3]);
if (offset + length > sb.st_size)
length = sb.st_size - offset;
/* Can't display bytes past end of file */
} else { /* No length arg ==> display to end of file */
length = sb.st_size - offset;
}
addr = mmap(NULL, length + offset - pa_offset, PROT_READ,
MAP_PRIVATE, fd, pa_offset);
if (addr == MAP_FAILED)
handle_error("mmap");
s = write(STDOUT_FILENO, addr + offset - pa_offset, length);
if (s != length) {
if (s == -1)
handle_error("write");
fprintf(stderr, "partial write");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}
SEE ALSO
getpagesize(2),
mincore(2),
mlock(2),
mmap2(2),
mprotect(2),
mremap(2),
msync(2),
remap_file_pages(2),
setrlimit(2),
shmat(2),
shm_open(3),
shm_overview(7)
The descriptions of the following files in
proc(5):
/proc/[pid]/maps,
/proc/[pid]/map_files,
and
/proc/[pid]/smaps.
B.O. Gallmeister, POSIX.4, O'Reilly, pp. 128-129 and 389-391.
Index
- NAME
-
- SYNOPSIS
-
- DESCRIPTION
-
- munmap()
-
- Timestamps changes for file-backed mappings
-
- RETURN VALUE
-
- ERRORS
-
- CONFORMING TO
-
- AVAILABILITY
-
- NOTES
-
- C library/kernel ABI differences
-
- BUGS
-
- EXAMPLE
-
- Program source
-
- SEE ALSO
-
This document was created by
man2html,
using the manual pages.
Time: 02:54:49 GMT, September 18, 2014