CACOS

Section: Linux Programmer's Manual (3)
Updated: 2011-09-15
Index Return to Main Contents
 

NAME

cacos, cacosf, cacosl - complex arc cosine  

SYNOPSIS

#include <complex.h>

double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

Link with -lm.  

DESCRIPTION

The cacos() function calculates the complex arc cosine of z. If y = cacos(z), then z = ccos(y). The real part of y is chosen in the interval [0,pi].

One has:


    cacos(z) = -i * clog(z + i * csqrt(1 - z * z))
 

VERSIONS

These functions first appeared in glibc in version 2.1.  

CONFORMING TO

C99.  

EXAMPLE

/* Link with "-lm" */

#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{
    double complex z, c, f;
    double complex i = I;

    if (argc != 3) {
        fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
        exit(EXIT_FAILURE);
    }

    z = atof(argv[1]) + atof(argv[2]) * I;

    c = cacos(z);

    printf("cacos() = %6.3f %6.3f*i\n", creal(c), cimag(c));

    f = -i * clog(z + i * csqrt(1 - z * z));

    printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));

    exit(EXIT_SUCCESS);
}
 

SEE ALSO

ccos(3), clog(3), complex(7)


 

Index

NAME
SYNOPSIS
DESCRIPTION
VERSIONS
CONFORMING TO
EXAMPLE
SEE ALSO

This document was created by man2html, using the manual pages.
Time: 02:55:19 GMT, September 18, 2014