CACOSH
Section: Linux Programmer's Manual (3)
Updated: 2011-09-15
Index
Return to Main Contents
NAME
cacosh, cacoshf, cacoshl - complex arc hyperbolic cosine
SYNOPSIS
#include <complex.h>
double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);
Link with -lm.
DESCRIPTION
The
cacosh()
function calculates the complex arc hyperbolic cosine of
z.
If y = cacosh(z), then z = ccosh(y).
The imaginary part of
y
is chosen in the interval [-pi,pi].
The real part of
y
is chosen nonnegative.
One has:
cacosh(z) = 2 * clog(csqrt((z + 1) / 2) + csqrt((z - 1) / 2))
VERSIONS
These functions first appeared in glibc in version 2.1.
CONFORMING TO
C99.
EXAMPLE
/* Link with "-lm" */
#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{
double complex z, c, f;
if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);
}
z = atof(argv[1]) + atof(argv[2]) * I;
c = cacosh(z);
printf("cacosh() = %6.3f %6.3f*i\n", creal(c), cimag(c));
f = 2 * clog(csqrt((z + 1)/2) + csqrt((z - 1)/2));
printf("formula = %6.3f %6.3f*i\n", creal(f2), cimag(f2));
exit(EXIT_SUCCESS);
}
SEE ALSO
acosh(3),
cabs(3),
ccosh(3),
cimag(3),
complex(7)
Index
- NAME
-
- SYNOPSIS
-
- DESCRIPTION
-
- VERSIONS
-
- CONFORMING TO
-
- EXAMPLE
-
- SEE ALSO
-
This document was created by
man2html,
using the manual pages.
Time: 02:55:19 GMT, September 18, 2014