CATANH

Section: Linux Programmer's Manual (3)
Updated: 2011-09-15
Index Return to Main Contents
 

NAME

catanh, catanhf, catanhl - complex arc tangents hyperbolic  

SYNOPSIS

#include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

Link with -lm.  

DESCRIPTION

The catanh() function calculates the complex arc hyperbolic tangent of z. If y = catanh(z), then z = ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2].

One has:


    catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))
 

VERSIONS

These functions first appeared in glibc in version 2.1.  

CONFORMING TO

C99.  

EXAMPLE

/* Link with "-lm" */

#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{
    double complex z, c, f;

    if (argc != 3) {
        fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
        exit(EXIT_FAILURE);
    }

    z = atof(argv[1]) + atof(argv[2]) * I;

    c = catanh(z);
    printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));

    f = 0.5 * (clog(1 + z) - clog(1 - z));
    printf("formula  = %6.3f %6.3f*i\n", creal(f2), cimag(f2));

    exit(EXIT_SUCCESS);
}
 

SEE ALSO

atanh(3), cabs(3), cimag(3), ctanh(3), complex(7)


 

Index

NAME
SYNOPSIS
DESCRIPTION
VERSIONS
CONFORMING TO
EXAMPLE
SEE ALSO

This document was created by man2html, using the manual pages.
Time: 02:55:19 GMT, September 18, 2014