CATANH
Section: Linux Programmer's Manual (3)
Updated: 2011-09-15
Index
Return to Main Contents
NAME
catanh, catanhf, catanhl - complex arc tangents hyperbolic
SYNOPSIS
#include <complex.h>
double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);
Link with -lm.
DESCRIPTION
The
catanh()
function calculates the complex arc hyperbolic tangent of
z.
If y = catanh(z), then z = ctanh(y).
The imaginary part of
y
is chosen in the interval [-pi/2,pi/2].
One has:
catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))
VERSIONS
These functions first appeared in glibc in version 2.1.
CONFORMING TO
C99.
EXAMPLE
/* Link with "-lm" */
#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{
double complex z, c, f;
if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);
}
z = atof(argv[1]) + atof(argv[2]) * I;
c = catanh(z);
printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));
f = 0.5 * (clog(1 + z) - clog(1 - z));
printf("formula = %6.3f %6.3f*i\n", creal(f2), cimag(f2));
exit(EXIT_SUCCESS);
}
SEE ALSO
atanh(3),
cabs(3),
cimag(3),
ctanh(3),
complex(7)
Index
- NAME
-
- SYNOPSIS
-
- DESCRIPTION
-
- VERSIONS
-
- CONFORMING TO
-
- EXAMPLE
-
- SEE ALSO
-
This document was created by
man2html,
using the manual pages.
Time: 02:55:19 GMT, September 18, 2014