#include <unistd.h> int access(const char *pathname, int mode); #include <fcntl.h> /* Definition of AT_* constants */ #include <unistd.h> int faccessat(int dirfd, const char *pathname, int mode, int flags);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
faccessat():
The mode specifies the accessibility check(s) to be performed, and is either the value F_OK, or a mask consisting of the bitwise OR of one or more of R_OK, W_OK, and X_OK. F_OK tests for the existence of the file. R_OK, W_OK, and X_OK test whether the file exists and grants read, write, and execute permissions, respectively.
The check is done using the calling process's real UID and GID, rather than the effective IDs as is done when actually attempting an operation (e.g., open(2)) on the file. This allows set-user-ID programs to easily determine the invoking user's authority.
If the calling process is privileged (i.e., its real UID is zero), then an X_OK check is successful for a regular file if execute permission is enabled for any of the file owner, group, or other.
If the pathname given in pathname is relative, then it is interpreted relative to the directory referred to by the file descriptor dirfd (rather than relative to the current working directory of the calling process, as is done by access() for a relative pathname).
If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is interpreted relative to the current working directory of the calling process (like access()).
If pathname is absolute, then dirfd is ignored.
flags is constructed by ORing together zero or more of the following values:
See openat(2) for an explanation of the need for faccessat().
access() and faccessat() may fail if:
The following additional errors can occur for faccessat():
Warning: Using these calls to check if a user is authorized to, for example, open a file before actually doing so using open(2) creates a security hole, because the user might exploit the short time interval between checking and opening the file to manipulate it. For this reason, the use of this system call should be avoided. (In the example just described, a safer alternative would be to temporarily switch the process's effective user ID to the real ID and then call open(2).)
access() always dereferences symbolic links. If you need to check the permissions on a symbolic link, use faccessat(2) with the flag AT_SYMLINK_NOFOLLOW.
These calls return an error if any of the access types in mode is denied, even if some of the other access types in mode are permitted.
If the calling process has appropriate privileges (i.e., is superuser), POSIX.1-2001 permits an implementation to indicate success for an X_OK check even if none of the execute file permission bits are set. Linux does not do this.
A file is accessible only if the permissions on each of the directories in the path prefix of pathname grant search (i.e., execute) access. If any directory is inaccessible, then the access() call will fail, regardless of the permissions on the file itself.
Only access bits are checked, not the file type or contents. Therefore, if a directory is found to be writable, it probably means that files can be created in the directory, and not that the directory can be written as a file. Similarly, a DOS file may be found to be "executable," but the execve(2) call will still fail.
These calls may not work correctly on NFSv2 filesystems with UID mapping enabled, because UID mapping is done on the server and hidden from the client, which checks permissions. (NFS versions 3 and higher perform the check on the server.) Similar problems can occur to FUSE mounts.
In kernels before 2.6.20, these calls ignored the effect of the MS_NOEXEC flag if it was used to mount(2) the underlying filesystem. Since kernel 2.6.20, the MS_NOEXEC is honored