#include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> int open(const char *pathname, int flags); int open(const char *pathname, int flags, mode_t mode); int creat(const char *pathname, mode_t mode); int openat(int dirfd, const char *pathname, int flags); int openat(int dirfd, const char *pathname, int flags, mode_t mode);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
openat():
By default, the new file descriptor is set to remain open across an execve(2) (i.e., the FD_CLOEXEC file descriptor flag described in fcntl(2) is initially disabled); the O_CLOEXEC flag, described below, can be used to change this default. The file offset is set to the beginning of the file (see lseek(2)).
A call to open() creates a new open file description, an entry in the system-wide table of open files. The open file description records the file offset and the file status flags (see below). A file descriptor is a reference to an open file description; this reference is unaffected if pathname is subsequently removed or modified to refer to a different file. For further details on open file descriptions, see NOTES.
The argument flags must include one of the following access modes: O_RDONLY, O_WRONLY, or O_RDWR. These request opening the file read-only, write-only, or read/write, respectively.
In addition, zero or more file creation flags and file status flags can be bitwise-or'd in flags. The file creation flags are O_CLOEXEC, O_CREAT, O_DIRECTORY, O_EXCL, O_NOCTTY, O_NOFOLLOW, O_TMPFILE, O_TRUNC, and O_TTY_INIT. The file status flags are all of the remaining flags listed below. The distinction between these two groups of flags is that the file status flags can be retrieved and (in some cases) modified; see fcntl(2) for details.
The full list of file creation flags and file status flags is as follows:
Note that the use of this flag is essential in some multithreaded programs, because using a separate fcntl(2) F_SETFD operation to set the FD_CLOEXEC flag does not suffice to avoid race conditions where one thread opens a file descriptor and attempts to set its close-on-exec flag using fcntl(2) at the same time as another thread does a fork(2) plus execve(2). Depending on the order of execution, the race may lead to the file descriptor returned by open() being unintentionally leaked to the program executed by the child process created by fork(2). (This kind of race is in principle possible for any system call that creates a file descriptor whose close-on-exec flag should be set, and various other Linux system calls provide an equivalent of the O_CLOEXEC flag to deal with this problem.)
mode specifies the permissions to use in case a new file is created. This argument must be supplied when O_CREAT or O_TMPFILE is specified in flags; if neither O_CREAT nor O_TMPFILE is specified, then mode is ignored. The effective permissions are modified by the process's umask in the usual way: The permissions of the created file are (mode & ~umask). Note that this mode applies only to future accesses of the newly created file; the open() call that creates a read-only file may well return a read/write file descriptor.
The following symbolic constants are provided for mode:
A semantically similar (but deprecated) interface for block devices is described in raw(8).
By the time write(2) (and similar) return, the output data has been transferred to the underlying hardware, along with any file metadata that would be required to retrieve that data (i.e., as though each write(2) was followed by a call to fdatasync(2)). See NOTES below.
When these two flags are specified, symbolic links are not followed: if pathname is a symbolic link, then open() fails regardless of where the symbolic link points to.
In general, the behavior of O_EXCL is undefined if it is used without O_CREAT. There is one exception: on Linux 2.6 and later, O_EXCL can be used without O_CREAT if pathname refers to a block device. If the block device is in use by the system (e.g., mounted), open() fails with the error EBUSY.
On NFS, O_EXCL is supported only when using NFSv3 or later on kernel 2.6 or later. In NFS environments where O_EXCL support is not provided, programs that rely on it for performing locking tasks will contain a race condition. Portable programs that want to perform atomic file locking using a lockfile, and need to avoid reliance on NFS support for O_EXCL, can create a unique file on the same filesystem (e.g., incorporating hostname and PID), and use link(2) to make a link to the lockfile. If link(2) returns 0, the lock is successful. Otherwise, use stat(2) on the unique file to check if its link count has increased to 2, in which case the lock is also successful.
The following operations can be performed on the resulting file descriptor:
If pathname is a symbolic link and the O_NOFOLLOW flag is also specified, then the call returns a file descriptor referring to the symbolic link. This file descriptor can be used as the dirfd argument in calls to fchownat(2), fstatat(2), linkat(2), and readlinkat(2) with an empty pathname to have the calls operate on the symbolic link.
By the time write(2) (and similar) return, the output data and associated file metadata have been transferred to the underlying hardware (i.e., as though each write(2) was followed by a call to fsync(2)). See NOTES below.
O_TMPFILE must be specified with one of O_RDWR or O_WRONLY and, optionally, O_EXCL. If O_EXCL is not specified, then linkat(2) can be used to link the temporary file into the filesystem, making it permanent, using code like the following:
char path[PATH_MAX]; fd = open("/path/to/dir", O_TMPFILE | O_RDWR, S_IRUSR | S_IWUSR); /* File I/O on 'fd'... */ snprintf(path, PATH_MAX, "/proc/self/fd/%d", fd); linkat(AT_FDCWD, path, AT_FDCWD, "/path/for/file", AT_SYMLINK_FOLLOW);
In this case, the open() mode argument determines the file permission mode, as with O_CREAT.
Specifying O_EXCL in conjunction with O_TMPFILE prevents a temporary file from being linked into the filesystem in the above manner. (Note that the meaning of O_EXCL in this case is different from the meaning of O_EXCL otherwise.)
There are two main use cases for O_TMPFILE:
If the pathname given in pathname is relative, then it is interpreted relative to the directory referred to by the file descriptor dirfd (rather than relative to the current working directory of the calling process, as is done by open() for a relative pathname).
If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is interpreted relative to the current working directory of the calling process (like open()).
If pathname is absolute, then dirfd is ignored.
The following additional errors can occur for openat():
openat(): POSIX.1-2008.
The O_DIRECT, O_NOATIME, O_PATH, and O_TMPFILE flags are Linux-specific. One must define _GNU_SOURCE to obtain their definitions.
The O_CLOEXEC, O_DIRECTORY, and O_NOFOLLOW flags are not specified in POSIX.1-2001, but are specified in POSIX.1-2008. Since glibc 2.12, one can obtain their definitions by defining either _POSIX_C_SOURCE with a value greater than or equal to 200809L or _XOPEN_SOURCE with a value greater than or equal to 700. In glibc 2.11 and earlier, one obtains the definitions by defining _GNU_SOURCE.
As noted in feature_test_macros(7), feature test macros such as _POSIX_C_SOURCE, _XOPEN_SOURCE, and _GNU_SOURCE must be defined before including any header files.
The (undefined) effect of O_RDONLY | O_TRUNC varies among implementations. On many systems the file is actually truncated.
Note that open() can open device special files, but creat() cannot create them; use mknod(2) instead.
If the file is newly created, its st_atime, st_ctime, st_mtime fields (respectively, time of last access, time of last status change, and time of last modification; see stat(2)) are set to the current time, and so are the st_ctime and st_mtime fields of the parent directory. Otherwise, if the file is modified because of the O_TRUNC flag, its st_ctime and st_mtime fields are set to the current time.
When a file descriptor is duplicated (using dup(2) or similar), the duplicate refers to the same open file description as the original file descriptor, and the two file descriptors consequently share the file offset and file status flags. Such sharing can also occur between processes: a child process created via fork(2) inherits duplicates of its parent's file descriptors, and those duplicates refer to the same open file descriptions.
Each open(2) of a file creates a new open file description; thus, there may be multiple open file descriptions corresponding to a file inode.
Linux implements O_SYNC and O_DSYNC, but not O_RSYNC. (Somewhat incorrectly, glibc defines O_RSYNC to have the same value as O_SYNC.)
O_SYNC provides synchronized I/O file integrity completion, meaning write operations will flush data and all associated metadata to the underlying hardware. O_DSYNC provides synchronized I/O data integrity completion, meaning write operations will flush data to the underlying hardware, but will only flush metadata updates that are required to allow a subsequent read operation to complete successfully. Data integrity completion can reduce the number of disk operations that are required for applications that don't need the guarantees of file integrity completion.
To understand the difference between the two types of completion, consider two pieces of file metadata: the file last modification timestamp (st_mtime) and the file length. All write operations will update the last file modification timestamp, but only writes that add data to the end of the file will change the file length. The last modification timestamp is not needed to ensure that a read completes successfully, but the file length is. Thus, O_DSYNC would only guarantee to flush updates to the file length metadata (whereas O_SYNC would also always flush the last modification timestamp metadata).
Before Linux 2.6.33, Linux implemented only the O_SYNC flag for open(). However, when that flag was specified, most filesystems actually provided the equivalent of synchronized I/O data integrity completion (i.e., O_SYNC was actually implemented as the equivalent of O_DSYNC).
Since Linux 2.6.33, proper O_SYNC support is provided. However, to ensure backward binary compatibility, O_DSYNC was defined with the same value as the historical O_SYNC, and O_SYNC was defined as a new (two-bit) flag value that includes the O_DSYNC flag value. This ensures that applications compiled against new headers get at least O_DSYNC semantics on pre-2.6.33 kernels.
On NFS filesystems with UID mapping enabled, open() may return a file descriptor but, for example, read(2) requests are denied with EACCES. This is because the client performs open() by checking the permissions, but UID mapping is performed by the server upon read and write requests.
Linux reserves the special, nonstandard access mode 3 (binary 11) in flags to mean: check for read and write permission on the file and return a descriptor that can't be used for reading or writing. This nonstandard access mode is used by some Linux drivers to return a descriptor that is to be used only for device-specific ioctl(2) operations.
First, openat() allows an application to avoid race conditions that could occur when using open() to open files in directories other than the current working directory. These race conditions result from the fact that some component of the directory prefix given to open() could be changed in parallel with the call to open(). Such races can be avoided by opening a file descriptor for the target directory, and then specifying that file descriptor as the dirfd argument of openat().
Second, openat() allows the implementation of a per-thread "current working directory", via file descriptor(s) maintained by the application. (This functionality can also be obtained by tricks based on the use of /proc/self/fd/dirfd, but less efficiently.)
The O_DIRECT flag may impose alignment restrictions on the length and address of user-space buffers and the file offset of I/Os. In Linux alignment restrictions vary by filesystem and kernel version and might be absent entirely. However there is currently no filesystem-independent interface for an application to discover these restrictions for a given file or filesystem. Some filesystems provide their own interfaces for doing so, for example the XFS_IOC_DIOINFO operation in xfsctl(3).
Under Linux 2.4, transfer sizes, and the alignment of the user buffer and the file offset must all be multiples of the logical block size of the filesystem. Since Linux 2.6.0, alignment to the logical block size of the underlying storage (typically 512 bytes) suffices. The logical block size can be determined using the ioctl(2) BLKSSZGET operation or from the shell using the command:
blockdev --getss
O_DIRECT I/Os should never be run concurrently with the fork(2) system call, if the memory buffer is a private mapping (i.e., any mapping created with the mmap(2) MAP_PRIVATE flag; this includes memory allocated on the heap and statically allocated buffers). Any such I/Os, whether submitted via an asynchronous I/O interface or from another thread in the process, should be completed before fork(2) is called. Failure to do so can result in data corruption and undefined behavior in parent and child processes. This restriction does not apply when the memory buffer for the O_DIRECT I/Os was created using shmat(2) or mmap(2) with the MAP_SHARED flag. Nor does this restriction apply when the memory buffer has been advised as MADV_DONTFORK with madvise(2), ensuring that it will not be available to the child after fork(2).
The O_DIRECT flag was introduced in SGI IRIX, where it has alignment restrictions similar to those of Linux 2.4. IRIX has also a fcntl(2) call to query appropriate alignments, and sizes. FreeBSD 4.x introduced a flag of the same name, but without alignment restrictions.
O_DIRECT support was added under Linux in kernel version 2.4.10. Older Linux kernels simply ignore this flag. Some filesystems may not implement the flag and open() will fail with EINVAL if it is used.
Applications should avoid mixing O_DIRECT and normal I/O to the same file, and especially to overlapping byte regions in the same file. Even when the filesystem correctly handles the coherency issues in this situation, overall I/O throughput is likely to be slower than using either mode alone. Likewise, applications should avoid mixing mmap(2) of files with direct I/O to the same files.
The behavior of O_DIRECT with NFS will differ from local filesystems. Older kernels, or kernels configured in certain ways, may not support this combination. The NFS protocol does not support passing the flag to the server, so O_DIRECT I/O will bypass the page cache only on the client; the server may still cache the I/O. The client asks the server to make the I/O synchronous to preserve the synchronous semantics of O_DIRECT. Some servers will perform poorly under these circumstances, especially if the I/O size is small. Some servers may also be configured to lie to clients about the I/O having reached stable storage; this will avoid the performance penalty at some risk to data integrity in the event of server power failure. The Linux NFS client places no alignment restrictions on O_DIRECT I/O.
In summary, O_DIRECT is a potentially powerful tool that should be used with caution. It is recommended that applications treat use of O_DIRECT as a performance option which is disabled by default.
One must check for two different error codes, EISDIR and ENOENT, when trying to determine whether the kernel supports O_TMPFILE functionality.